

Acceleration of H⁻ ions for the Cyclotron Institute Upgrade Project

Juan Olvera Angelo State University 2010 REU-Cyclotron Institute, Texas A&M University

Outline

- Why we need the K₁₅o Cyclotron
- Original plans for proton (H+) beam via ECR2
- Problems with proton extraction using ECR2
- Enter the H⁻ Source
- Other upgrades done to K150 Cyclotron
- Future work
- Acknowledgments
- References

Why K150 is Needed

- New concept using Rare Isotope Accelerator (RIA)
- First proposed experiment:

$$p + {}^{27}_{13}Al_{14} \rightarrow n + {}^{27}_{14}Si_{13}$$

- Requirements for this reaction:
 - Proton current of 14µA at extraction
 - Proton current of 10µA on target
 - Proton beam energy of 30MeV on Al target

nitial Plan for Proton Production

- Original plan called for use of the Electron Cyclotron Resonance (ECR2) source
- ECR2 source removes electrons, produces H+ Ions (protons) before injection into cyclotron
- H⁺ are injected into the cyclotron and accelerated

K150 Injection Line

Extraction Problems

- Activation of deflector
 - Loss of run time
 - Safety hazard secondary radiation

- Extraction efficiency of deflector
 - Approximately 50% loss of beam at best

Activation of Deflector

Time	Activity(mCi)	Dose Rate(mRem/hr)
10 min	1168.108	52144.3
1 hour	1028.649	45918.9
1 day	686.216	30632.7
3 days	390.27	17421.7
5 days	265.811	11865.8
Na-22 gamma source	0.1	4.5

Rad worker limit: 5000mRem/year

Distance: .5 meters

Activation of Deflector

- Build a special deflector for protons
 - Need one for each proton energy, ideally
 - Approximately 8oKV bias needed HV danger
 - HV Sparking degrades surface, less deflection
- Build deflector from pure Aluminum
 - Excessive heat complicates maintenance
- Make ions via an H⁻ source
 - Best option

Enter the H-Source

- 100% extraction efficiency from cyclotron
- No need for deflector reduces secondary radiation
- No danger of HV no sparking, less maintenance
- Allows production of high intensity proton and deuteron beams

H-Source Placement

roton (H⁺) Production

- H-ion collides with Carbon foil 2 microns thick
- Electrons are stripped away
- Proton (H⁺) emerges from collision

Extraction of Protons

ut How to Get Hons?

Excited Molecules $e_{hot} + H_2 \rightarrow e + H_2 (v'')$

Excited Molecules

Dissociative Attachment $e_{cold} + H_2(v'') \rightarrow H + H^-$

Source "Tilt" suggested by Olli Tarvainen, JYFL

Quick Recap

Results From First Test

- 24.5µA at extraction for a brief moment
- 10µA at extraction, sustained – vacuum problems
- 60+ hours of filament use without failure

Other Upgrades to the K150

- Installed spool, steering magnet, and platform
- Raised water cooling system reduced clutter
- Installed door switches in HV cage safety precaution
- Installed safety cage to isolate HV near source
- Installed gas lines, air lines, electrode covers, helped wire some interlock lines

Future Work

- Test beam focusing, throughput down the beam line
- Joe Brinkley will develop program to optimize beam from source
- Improve ion source filament is limiting factor
 - Inductively coupled rf-discharge
 - Eliminates filament
 - Inductively heated thermionic emission cathode
 - Extends the lifetime of the filament further development needed

Acknowledgments

- National Science Foundation (NSF)
- Department of Energy (DOE)
- Texas A&M University
- The Welch Foundation

Acknowledgments

- Dr. Henry Clark
- Dr. Gabriel Tabacaru
- Joe Brinkley
- Steve Russell
- Stephen Molitor
- Bill Morgan
- Howard Peeler
- Leigh Gathings
- Jason Ford
- All the shop personnel: Andy, James, Larry, Lee, and Ruben
- All the nice and helpful people at the Cyclotron Institute

References

- Clark, Henry. "Project Management Plan for the Cyclotron Institute Upgrade at Texas A&M University"
- Kalvas, T. and Tarvainen, O. "Extending the Lifetime of Texas A&M H- Ion Source," University of Jyvaskyla. 13 July 2010.
- Kalvas, T. et al., "Texas A&M H- Ion Source Extraction Design," University of Jyvaskyla. 15 May 2009.
- Kim, G.J., "Status of the K150 Cyclotron Injection LIne," 25 February 2010.
- Tabacaru, G., "Evaluation of the Radiation Shielding System of the 88" Cyclotron Vault at Texas A&M University."
- Zhuravlev, B.V. et al, "Analysis of neutron spectra in interaction of 22-MeV protons with nuclei," Yadernaia Physics. Fig. 39(1984) 264-271
- "Technical Review V," January 22-23, 2009.

Questions?